D-A121 884 LFP USER’S MANURL (LINCOLN FORTRAN PREPROCESSOR) 11
VERSION 82081 FOR IBN/AMD. . CU) MASSACHUSETTS INST OF
TECH LEXINGTON LINCOLN LARB J H COSGROVE ET AL,
01 SEP 82 TR-623 ESD-TR-82-883

S g St R A e . . E
e P e e e mat atalt e a PO ;- St e mm it b e e
e e e date e - e -

LY P
[PO)

PR

is s

BN
g .

s 2s B2s =1,
o
= ¢ I ’

Fl e :1

. =
L2 s ns

@

¢ MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

y0O0IgT VW

QI -t g s i e g s

02 0483

82 11

PR 2 ar

‘“.1‘(,‘!}1;(3]! W B v
. NN . SR

FUERTW N)

¢

The work reported in this document was performed at Lincoln Laboratory, 2 center
for research operated by Massachusetts institute of Technology. This work was
sponsored by the Department of the Army under Air Force Contract F19628-80-C-0002.

This report may be reproduced to satisfy needs of U.S. Government agencies.

The views and conclusions contained in this document are those of the contractor and
should not be interpreted as necessarily representing the official policies, either
expressed or implied, of the United States Government.

The Public Affairs Office has reviewed this report, and it is
releasable to the National Technical Information Service,
where it will be available to the general public, including
foreign nationals.

This technical report has been reviewed and is approved for publication.
FOR THE COMMANDER

Thomas J. Alpert, Major, USAF
Chief, ESD Lincoln Laboratory Project Office

Non-Lincoln Recipients
PLEASE DO NOT RETURN

Permission is given to destroy this document
when it is no longer needed.

o

C

'-| MASSACHUSETTS INSTITUTE OF TECHNOLOGY
{ LINCOLN LABORATORY

£

h LFP USER’S MANUAL

" (LINCOLN FORTRAN PREPROCESSOR)
VERSION 02.01 FOR IBM/AMDAHL SYSTEMS

J.H. COSGROVE
E.T. BAYLISS

Group 47

TECHNICAL REPORT 623

1 SEPTEMBER 1982

T

Approved for public release; distribution unlimited.

LR RN

LEXINGTON MASSACHUSETTS

Y

hd TR T T

S0 aaa

R

ABSTRACT

LFP (Lincoln Fortran Preprocessor) provides top-down control struc-
tures to FORTRAN and generates a self -documenting listing. LFP is com-

patible with exiating FORTRAN and also permits an internal procedure

- k2 . 2 ——
BVRAY ~ (NI ELAL I B S S e

capability.

Accession For

NTIS GRAXI §
[DTIC TAB
- Unannounced O

Justification

By.
pistribution/

AQAiiabilityﬂnges
Avail and/or
Special

Dist

A

111

el e

.

v L i S s O o gy | Y ey "

ISR~ SRR ER

S ALY

it e 4

...................

CONTENTS
Abstract 111
List of Illustrations ix
1.0 INTRODUCTION 1
. 2.0 RETENTION OF FORTRAN FEATURES 3
3.0 CORRELATION OF LFP AND FORTRAN SOURCE 4
. 4.0 STRUCTURED STATEMENTS 5
5.0 INDENTATION DESCRIPTION 8
6.0 CONTROL STRUCTURES 10
6.1 Decision Structures 10
6.1.1 1IF 10
6.1.2 UNLESS 10
6.1.3 WHEN . . . ELSE 11
6.1.4 CONDITIONAL ' 12
6.1.5 SELECT 14
6.2 Loop Structures 15
6.2.1 DO 15
6.2.2 WHILE 16
6.2.3 REPEAT WHILE 16
6.2.4 UNTIL 17
6.2.5 REPEAT UNTIL 18
6.3 Control Structure Summary Sheet 19
7.0 INTERNAL PROCEDURES 20

v

e T W e 8T

RPNy N

8.0 CONTROL STATEMENTIS 24

i 8.1 Listing Format Controls 25
. 8.1.1 Comment delimiter COMMENT 25
8.1.2 Control Character CONTROL 26
l 8.1.3 Double Spacing DS 26
8.1.4 Heading HEADING 26
8.1.5 Statement Mumbering LABEL 27
! 8.1.6 Left Adjust LADJ 29
? 8.1.7 #Lines/Page LINE 29
E;: 8.1.8 Listing Control LIST 29
7’;’-:‘ 8.1.9 No Left Adjust NOLADJ 29
. 8.1.10 No Listing NOLIST 30
8.1.11 Page Eject PAGE 30
8.1.12 Single Spacing SS 30
8.1.13 Triple Spacing TS 30
8.1.14 Listing Width WIDTH 30
8.2 Inclusion of External Files 31
8.2.1 Include Command INCLUDE 31
E 8.2.2 1Include Expansion INCEXP 32
‘i 8.3 Control Statement Summary 33
; 8.4 Control Statement Example ~ Typical Program Setup 34
9.0 COMMENTS 35
10.0 RESTRICTIONS AND CONVENTIONS 36
; 11.0 EXAMPLE OF LFP LISTING 39
g
vi
!

TS Y T T T T vy
EENER u- el e
v

S y QPG S

LA S0 e o
B O

vy

Lol m] elaamlial . P WL SIS WP W PP A Sy

12.0 ERRORS
12.1 Syntax Errors
12.2 Context Errors
12.3 Undetected Errors
12.4 Control Card Errors
13.0 PROCEDURE FOR USAGE ON CMS - EXEC LPG
14.0 PROGRAMMERS' GUIDE TO LFP
. 14.1 Subroutine Description
14.2 Installation of a New LFP Version
14.2.1 Bootstrapping LFP
14.2.2 Ingtallation parameter defaults
14.2.2.1 Number of print lines/page
14.2.2.2 Number of columns/page (width)
14.2.2.3 Default Heading
14.2.2.4 LFP Version Number
14.2.2.5 Default Control Character
14.2.2.6 Default Statement Labelling/Counting
14.2.2.7 1/0 Units
14.2.3 Comment Delimiter
15.0 MACRO PROCESSOR
15.1 Description
15.2 Procedure for Using MACRO on (MS

16.0 VARIABLE CROSS REFERENCE PROGRAM-—XREF

vii

44
44
45
46
48
49
52
52
57
57
57
57
57
57
58
58
58
59
59
60
60
65
66

——y 'l
L e e e

AAduan an aad

ACKNOWLEDGMENTS

BIBLIOGRAPHY

APPENDIX A.
B.

Control Structure Summary Sheet
Control Statement Summary Sheet

viii

W T TR TS

. L

69
69

70
71

[R

T sa wer
R

.

-

T YTV g

(o Me Amw s e 4 A v
e e]

7
-

Lo 4

T

1-1

11-1
11-2
11-3
11-4
13-1
15-1
15-2

16-1

R I R T T TS T T RN TS TR T T, Iy R A

LIST OF ILLUSTRATIONS

LFP Preprocessor

Internal procedure example

LFP listing of user's program

User's source program |

?OﬁTRAN listing of user's program
Variable cross reference listing

LPG Exec Structure

MACRO Processor Test Examples

Regults of MACRO Processor Test Examples

Cross Reference Symbol Codes

ix

22
40
41
42
43
51
63
64
68

1.0 INTRODUCTION o~

The Lincoln Fortran Preprocessor (LFP)ffig. l-fjwas constructed to
facflitate structured programming by extending FORTRAN to include the most
useful top down control structures. The choice of FORTRAN for a target
language was dictated by its being the only higher level language

v available on many mini-computers. This work was motivated by a desire to

make top-down structured programming tools available for the development

of FORTRAN software.
LFP is an upward compatible extension of FORTRAN which provides five

new top down decision structures, five additional loop structures and an

internal procedure capability. In addition to structured control, LFP

provides a neat, automatically-formatted, structured listing. The ease of

LA i a2 aitu e gl

program construction and clarity of program documentation are greatly
enhanced thus reducing the clerical detail and the likelihood of
programming in bugs.

At Lincoln Laborato LFP is implemented on an Amdahl 470 with the
Cf/CMs operating system, on a Modcomp 4 under MAX 4-rev D operating system

and on a PDP 11.

v Ty
AR S 4 A

YTy
! e

M

Lo i Al a2 o
I N

»

A e S 404

P —

-

R R AR

1

CasCan JuE e S

-1

USER SOURCE
PROGRAM IN LFP

_,

!

PROCESS LFP
CONTROL
STATEMENTS
SECTION 8

INCLUDE
FILES
SECTION 8.2

y

PROCESS LFP
COMMENT FIELODS
SECTION @

v

PROCESS LFP
CONSTRUCTS
SECTION 6,7

' 3

!

LFP
LISTING

P—Y

% LFP DIAGNOSTICS (SECTION

SOURCE PROGRAM
IN FORTRAN

Fig. 1l-1.

LFP preprocessor.

—

22

i BRI~ an

T
o -

M~ §

A/ - G

—

. -':"r‘.'.— K 'f

2.0 RETENTION OF FORTRAN FEATURES

The LFP translator examines each statement in the LFP program to see
if it is an extended statement (a statement valid in LFP but not in
FORTRAN). If it 1is recognized as an extended statement, the translator
generates the corresponding FORTRAN statements. If, however, the state-
ment Is not recognized as an extended statement, the translator assumes it
must bé a FORTRAN statement and passes it through unaltered. Thus the LFP
system does not restrict the use of FORTRAN statements, it simply provides
a set of additional statements which may be used. In particular, GO TOs,
arithmetic IFs, CALLs, arithmetic statement functions, and any other
FORTRAN statements, compiler dependent or otherwise, may be used in LFP

programs.

hun e ves _ane Sble et ames . g0

ateaddl aa e e A S S A
T Y . I RAua A i A g o m - . -

3.0 CORRELATION OF LFP AND FORTRAN SOURCE

A basic flaw in most FORTRAN preprocessors' output is the inability
to correlate the preprocessor source listing with compiler syntax or run-
time errors. This usually forces the user to list the FORTRAN source that
was generated by the preprocessor and to attempt to make sense out of the
generally unreadable FORTRAN.

The 'philosophy inherent in the LFP design was simple: Let LFP work
in the same numbering system as the FORTRAN compiler, since all compiler
errors or execution errors refer to this numbering system. However, not
all compilers number the statements the same way. IBM FORTRAN G and H
compilers number every statement except comment and continuation lines
while CDC and MODCOMP compilers number every statement. The LFP solution
was to allow the user to choose either type of statement numbering.

The statement identification field (line tag) that f{s present in
columns 73 to 80 of the user's source program, if one is present, may at
the option of the user be printed on the LFP listing along with the
statement. The FORTRAN source generated by LFP may also contain this sta-
tement identifier.

It is possible to specify exactly what type of line numbering scheme
is to be used by LFP with a LABEL control statement. (See Section 8.1.5.)

A sample of a source program processed by LFP along with the compiler

listing output may be found in Section 1ll.

EHNIO AP 4

NS

T TR YT

v i s o 3 \W, AR

4.0 STRUCTURED STATEMENTS

A basic notion of LFP is that of the structured statement which con-
sists of a control phrase and its scope. FORTRAN has two structured
statements, the logical IF and the DO. The following examples illustrate

this terminology:

structured statement

—

control phrase scope

keyword specification

T

IF (X.EQ.Y) UsVeW

keyword specification

s .

DO 30I = 1,N control phrase

A(I) = B(I)+C , structured

L(I) = I-K(I) scope statement
30 CONTINUE

Note that each structured statement consists of a control phrase which

controls the execution of a set of one or more statements (its scope).

Each control phrase consists of a keyword plus some additional infor-
mation called the specification. A statement which does not consist of a
control phrase and a scope 18 said to be a simple statement. Examples of
simple statements are assignment statements, subroutine CALLs, arithmetic

IFs, and GO TOs.

The problem with the Fortran logical IF statement is that its scope
may contain only a single simple statement. This restriction is elimi-
nated in the case of the DO, but at the cost of clerical detail (having to
stop thinking about the problem while a statement number is invented).

In LFP there is a uniform convention for writing control phrases and
indicating their scopes. To write a structured statement, the keyword is
placed.on a line beginning in column 7 followed by its specification
enclosed in parentheses. The remalnder of the line is left blank. The
statements comprising the scope are placed on successive lines. The end
of the scope is indicated by a FIN statement. This creates a multi-line

structured statement. Examples of multi-line structured statements:

IF (X.EQ.Y)

U = VW
R = S+T
L—FIN
DO (I = 1,N)
A(I) = B(I)+C
C = C*2.14-3.14
—FIN

Note: The statement number has been eliminated from the DO specification
since it is no longer necessary, the end of the loop being specified by
the FIN.

Nesting of structured statements is permitted to any depth.
Example of nested structured statements:

IF (X.EQ.Y)

U = VHW

DO (I = 1, N)
A(1) = B(I)+C
C = C*2.14-3.14
FIN

R = S+T

- FIN

el T T TTIT T

AR RN / - MM

Y—rrTY

yT—T
e

When the scope of a control phrase consists of a single simple
statement, it may be placed on the same line as the control phrase and the
FIN may be dispensed with. This creates a one-line structured statement.

Examples of one-line structured statements:

IF (X.EQ.Y) U = V+W
Dd (I = 1,N) A(I) = B(I)+C
Since each control phrase must begin on a new line, it is not
possible to have a one-line structured statement whose scope consists of a
structured statement:
Example of invalid construction:
IF (X.EQ.Y) DO (I = 1,N) A(I) = B(I)¥C
To achieve the effect desired above, the IF must be written in a multi-
line form.
Example of valid construction:
IF (X.EQ.Y)
DO (I = 1,N) A(I) = B(I)+C
FIN
In addition to the IF and DO, LFP provides several useful structured

statements not available in FORTRAN. After a brief excursion into the

subject of indentation, we will present these additional structures.

A et m A A & o m M A A A% s oA Medo—n . e al L e _ w n

777

—r

A

T

ML I 4 me o aen se

&0

(IR A

5.0 INDENTATION DESCRIPTION

In the examples of multi-line structured statements above, the state-
ments in the scope were indented and an "L" shaped line was drawn con-
necting the keyword of the control phrase to the matching FIN. The
resulting graphic effect helps to reveal the structure of the program.

The rules for using indentation and FINs are quite simple and uniform.

The coﬁttol phragse of a multi-line structured statement always causes
indentation of the statements that follow its scope. Nothing else causes
indentation. A level of indentation (i.e., a scope) can only be terminated
with a FIN.

When writing an LFP program on paper, the programmer should adopt the
indentation and line drawing coanventions shown below. When preparing a
LFP source program in machine readable form, however, each statement
should begin in column 7. When the LFP translator produces the listing,
it will reintroduce the correct indentation and produce the corresponding
lines. If the programmer attempts to introduce his own indentation with
tﬁe use of leading blanks, the program will be translated correctly, but
the resulting listing will be improperly indented. The source may be left
adjusted to column 7 before processing by the use of the LADJ control
card. See Section 8.1.6.

Example of indentation:

1. Program as written on paper by programmer:

IF (X.EQ.Y)

U= VW

D& (T =1,N)
A(T) =B(1)+C
C= C*2.4 -3.14

FIN
‘ R=S+T

——FIN

-

MMM {

Y
A

R W R TR e Ay e han e St BMbat EERE NI N N SE i heut BN A S A AL SO Al 2

2. Program as entered into computer:

IF (X.EQ.Y)

U = VW

DO (I = 1,N)

A(I) = B(I)+C

C = C*2. 14-3. 14
FIN

R = S+T

FIN

3. Program as listed by LFP translator:
IF (X.WQ.Y)
e U= V+W
. DO(I-I,N)
« « A(I) = B(I)+C
« o+ C = (C*2.14-3.14
« ««.FPIN

R = S+T
..FIN

The correctly indented listing is a tremendous aid in reading and
working with programs. Except for the dots and spaces used for
indentation, the lines are listed exactly as they appear in the source
program. That is, the internal spacing of columns 7-72 is preserved.

There is seldom any need to refer to a straight listing of the unindented

source.

Bt 5% RERCMSIRURUEY

Yoo

Ty
ol L

Vel

NN ¢ AP

?

PNEREALELAL

MK

AR il]

Y YT

-

w = A 2anl RIS SR NN A A

6.0 CONTROL STRUCTURES

The complete set of control structures provided by LFP is described
in the following subsections together with their corresponding flow
charts. The symbol £; is used to indicate a logical expression. The sym-
bol § 1is used to indicate a scope of one or more statements. Some
statements, as indicated, do not have a one-line construction.

A.convenient summary of the information in this chapter may be found
at the end of this section and in Appendix A.

6.1 Decision Structures

Decision structures are structured statements which control the exe-
cution of their scopes on the basis of a logical expression or test.
6.1.1 1IF
Description: The IF statement causes a logical expression to be
evaluated. If the value is true, the scope is executed once and control
passes to the next statement. If the value is false, coantrol passes
directly to the next statement without execution of the scope.
General Form:
IF (L) S Flow Chart:
Examples:
IF (X.EQ.Y) U = V4W

IF (T.GT.0.AND.S.LT.R)

LJ z = o. 1
L] FIN

6.1.2 UNLESS

Description: "UNLESS ([)" is functionally equivalent to

"IF(.NOT.(L))", but is more convenient in some contexts.

10

-
!
!
[

o -0 = e T e T e T T e T e e T e e R e ST e Y| T Ty e A e YT T e T T Tty T o, e e - -

General Form: Flow Chart:

UNLESS (L) S
Examples: PALSE S
UNLESS (X.NE.Y) U = VW
UNLESS (T.LE.0.OR.S.GE.R) TRUE
« I = I+l
. Z=20.1
'o-vFIN

6.1.3 WHEN...ELSE

Description: The WHEN...ELSE statements corras;wnd to the IF...THEN...ELSE
statement of Algol, PL/1, Pascal, etc. In LFP, both the WHEN and the ELSE
act as structured statements although only the WHEN has a specification.
The ELSE statement must immediately follow the scope of the WHEN. The
specifier of the WHEN is evaluated and exactly one of the two scopes 1is
executed. The scope of the WHEN statement 18 executed if the expression
is true and the scope of the ELSE gtatement is executed if the expression
is false. In either case, control then passes to the next statement

following the ELSE scope.

General Form: l Plow Chart:
WHEN (L) S

ELSE S,

Examples: TRUE

WHEN (X.EQ.Y) U = V+W SI

WHEN (X.EQ.Y)
. U= V40

. T = T4l.5 Sz
...FIN

ELSE U = V-W

11

—— ———T Y ~wr - Ty —F v
T Tw .- Cl A Aute SRR I .. . P N T T < T

WHEN (X.EQ.Y) U = V4W
ELSE
. U=vVW
T = T+1.5
.« .FIN

Note: WHEN and ELSE always exist as a pair of statements, never
separately. Either the WHEN or the ELSE or both may assume the
multi-line form. ELSE is considered to be a control phrase, hence
it cannot be placed on the same line as the WHEN. Thus "WHEN {) Sl
.ELSE 51" is not valid.

A~ RS ReP | e

5~ AR

6.1.4 CONDITIONAL

Description: The CONDITIONAL statement is based on the LISP

conditional. A list of logical expressions is evaluated one by one until

A P AN

the first expression to be true 1is encountered. The scope corresponding

v—r

to that expression is executed, and control then passes to the first sta-

f! tement following the CONDITIONAL. If all expressions are false, no scope

is executed. (See, however, the note about OTHERWISE below.)

lal

General Form:

‘ Flow Chart:

CONDITIONAL
] (4£;) 'L
. (L) S2

TR aT T
. L e
- -

. (ﬁ;) Sn
[N} OFIN

Examples:

.-~471,_-~-~“,
e
L .

CONDITIONAL : :
. (X.LT.-5.0) U = U+W : y
. (X.LE.1.0) U = UHZ

. (X.LE.10.5) U =1U-Z TRUE Jiu

g

L SN N

LI .FIN

- FALSE

CONDITIONAL

(A.EQ.B) Z = 1.0

(A.LE.C)

. Y= 2.0

. Z = 3.4

++..FIN

(A.GT.C.AND.A.LT.B) Z=6.2
. (OTHERWISE) Z=0.0

«++FIN

Notes: The CONDITIONAL itself does not possess a one-line form. However,
each "(Ly) Sm " 18 treated as a structured statement and may be in one-
line or multi-line form.

- The reserved word OTHERWISE represents a catchall condition. That
18, "(OTHERWISE)Sx" is equivalent to "(.TRUE.)Ss" in a CONDITIONAL statement.

. 13

L“_-;.__._L‘ 2 aliiam e i a — P . . - - i A P S - v ol e,

YT Ty
PR A

T T
LI . . - . - R PR enan

MJSJINLAI A & e Adnd S S A i
- g T et t L

Y

Rt onnh oy S sl AL ML ARAR AL SN
s

6.1.5 SELECT

Description: The SELECT statement is similar to the CONDITIONAL
but is more specialized. It allows an expression to be tested for
equality with each expression in a list of expressions. When the first
matching expression is encountered, a corresponding scope is executed and
the SELECT statement terminates. In the description below,£;,£2,::-,Es
represént arbitrary but compatible expressions. Any type of expression
(integer, real, complex,...) 18 allowed as long as the underlying Fortran
system allows such expressions to be compared with an EQ. OR .NE. operator.

General Form: Flow Chart:

SELECT (&)

. (E2) 82

...FIN

Example:

SELECT (OPCODE(PC)) . . .
. (JuMP) PC = AD - . :
. (ADD)

« o+ A= A+B TRUE .

« « PC = PC+l -
. «..FIN @ 'S"

« (SKIP) PC = PC+2 FALSE :

. (STOP) CALL STOPCD T

.« FIN

Notes: As in the case of CONDITIONAL, at most one of the §;; will be
executed.

The catchall OTHERWISE may also be used in a SELECT statement.

Thus "(OTHERWISE)Sx " 1s equivalent to "(£)Ss " within a "SELECT
(£)" statement.

14

L S S U RN P - . STt i [SPRTRU PEUU SR DUDI SIS SPMPRUNIY S O TR g sV EY

*

A SN xRN

"

-

Bh FANTA RS Caie s . piamrintinUEn

-

SUELOUES SR aurhsu e Jaet i s

-

LA R AL AL

L g are e

T
Ak

......

The expression is reevaluated for each comparison in the list,
thus lengthy, time consuming, or irreproducable expressions should
be precomputed, assigned to a variable, and the variable used in
the specification portion of the SELECT statement.

6.2 LOOP Structures

The structured statements described below all have a scope which is
executed a variable number of times depending on specified conditions.

Of the five loops presented, the most useful are the DO, WHILE, AND
REPEAT UNTIL loops. To avoid confusion, the REPEAT WHILE and UNTIL loops

should be ignored initially.

6.2.1 DO

Description: The LFPs DO loop is functionally identical to the
Fortran DO loop. The only differences are syntactic. 1In the LFP DO loop,
the statement number is omitted from the DO statement, the incrementation
parameters are enclosed in parentheses, and the scope is indicated by
either the one line or multi-line convention. Since the semantics of the
Fortran DO statement vary from one Fortran compiler to another, a

flowchart cannot be given. The symbol I represents any legal incremen-

tation specification.

General Form

o) §

Examples:

DO (I = 1,N) A(I) = 0.0
DO (J = 3,K,3)

« B(J) = B(J-1)*B(J-2)

« C(J) = SIN(B(J))
++FIN

15

L

4

T T
i - :

T YV YTY
. P Y

—~y
-l .

1

T

‘

BaJiui R S et gadie = . AL SRt LI APEE Eal- ACacin-hli N e SRS

6.2.2 WHILE

Description: The WHILE loop causes its scope to be repeatedly
executed while a specified condition is true. The condition is checked
prior to the first execution of the scope, thus if the condition is ini-

tially false the scope will not be executed at all.

General Form: Flow Chart:

WILE (£). 8

Examples: FALSE

WHILE (X.LT.ACI)) I = I+l
TRUE
WHILE (P.NE.O)
. VAL(P) = VAL(P)+1
. P = LINK(P)
...FIN

6.2.3 REPEAT WHILE I

Description: By using the REPEAT verb, the test is logically

moved to the end of the loop. The REPEAT WHILE loop caused its scope to
be repeatedly executed while a specified condition remains true. The con-
dition is not checked until after the first execution of the scope. Thus
the scope will always be executed at least once and the condition indica-
tes under what circumstances the scope is to be repeai:ed.

Note: "REPEAT WHILE (£)" 1s functionally equivalent to "REPEAT UNTIL

(.NOT.(L))".

16

X W ——————— v - T W e T W ——y

Flow Chart:

Fl General Form:

REPEAT WHILE (L) S

Examples:

REPEAT WHILE(N.EQ.M(I)) I = I+l 5

P REPEAT WHILE (LINK(Q).NE.O)
. . R = LINK(Q)

. LINK(Q) TRUE
, .. P=Q

Y - A »

3 6.2.4 UNTIL

Description: The UNTIL loop causes its scope to be repeatedly
f, executed until a specified condition becomes true. The condition is
checked prior to the first execution of the scope, thus if the condition
is initially true, the scope will not be executed at all. Note that

"UNTIL (£)” is functionally equivalent to "WHILE (.NOT.(L)".

N0 7 (Saiaainianiig ~~ Al

General Form: Flow Chart:
UNTIL (L) S

. Examples:

h UNTIL (X.EQ.ACI)) I = I+l _TRuE

i UNTIL (P.EQ.0)
s . VAL(P) = VAL(P)+l FALSE
. P = LINK(P)

«+.FIN S

TTTFLISY

17

vy

[AN

Qi §7 1

| S

WORpp— rrT— 3 el i) - RN Sl R RN . N

6.2.5 REPEAT UNTIL

Description: By using the REPEAT verb, the test is logically
moved to the end of the loop. The REPEAT UNTIL loop causes its scope to
be repeatedly executed until a specified condition becomes true. The con-
dition is not checked until after the first execution of the acope. Thus
the scope will always be executed at least once and the condition indica-

tes under what circumstances the repetition of the scope 1s to be terminated.

General Form: Flow Chart:

REPEAT UNTIL (L) S

Examples:

REPEAT UNTIL (N.EQ.M(I)) I = I+l

"

REPEAT UNTIL (LINK(Q).EQ.0)
.« R = LINK(Q)
. LINK(Q) = P

. P=Q
. Q=R FALSE
...FIN ‘

TRUE

18

T T AR i Ao e S T T e W WTTTwET e Ty T e T e T T T T e s e

6.3 Control Structure Summary Sheet

F (L) S (" umess (L) S

CAMY-QUT-ACTION

TO CARRY-OUT-ACTION S

noTE: PuACE A PETURN, STOP, on
AL £XIT sratment anead
or. THe rinsT TO sTATRMNT,

: : : : | wote: OTHERVISE can ng used as
A CATCHALL CONDITION OR
oxrression 1n CONDITIONAL

aas S | e Sa a0 SELECT starenents,
h]

aLse ! ALSE LIS £ = LOSICAL DXPRESSION
- ’ 3 = sraroent(s)
2 : € = xxrression
r e J _ y, Z = D0 seecirication

(worum)) {werwmecer s) [om ey s) r WIE (L) S)

3

{ o~ |

[_ FALSE

9

q J P
L,

1

3

19

-

PP

7.0 INTERNAL PROCEDURES

In LFP a sequence of statements may be declared an internal procedure
and given a name. The procedure may then be invoked from any point in the
program by simply giving its name.

Procedure names may be any string of letters, digits, and hyphens
(i.e., minus signs) beginning with a letter and containing at least one
hyphen: Imbedded blanks are not allowed. The only restriction on the
length of a name is that it may not be continued onto a second line.

Examples of valid internal procedure names:

INITIALIZE -ARRAYS

GIVE -WARNING

SORT -INTO -DESENDING -ORDER
INITIATE -PHASE -3

A procedure declaration consists of the keyword "TO" followed by the
procedure name and its scope. The set of statements comprising the proce-
dure is called its scope. If the scope consists of a single simple state-
ment it may be placed on the same line as the "T0" and procedure name,
otherwise the statements of the scope are placed on the following lines
and terminated with a FIN statement. These rules are analogous with the

rules for forming the scope of a structured statement.

General Form of procedure declaration:

TO procedure-name

20

Y

a0

Examples of procedure declarations:
TO RESET-POINTER P =0
TO DOQ-NOTHING

TO SUMMARIZE -FILE

. INITIALIZE -SUMMARY

. OPEN-FILE

. REPEAT UNTIL (EOF)

+ « ATTEMPT -TO -READ -RECORD
.+ WHEN (EOF) CLOSE-FILE
.+ ELSE UPDATE -SUMMARY

- l.IFIN
. OUTPUT -SUMMARY
-..FIN

An internal procedure reference is a procedure name appearing where an
executable statement would be expected. In fact, an internal procedure
reference is an executable simple statement and thus may be used in the
scope of a structured statement as in the last example above. When
control reaches a procedure reference during execution of a LFP program, a
return address is saved and control is transferred to the first statement
in the scope of the procedure. When control reaches the end of the scope,
control is transferred back to the statement logically following the pro-
cedure reference.

A typical LFP program or subprogram consists of a sequence of Fortran
declarations: (e.g. INTEGER, DIMENSION, COMMON, etc.) followed by a
sequence of executable statements called the body of the program followed
by the LFP internal procedure declarations, if any, and finally the END
statement.

Here 1is a complete LFP program (Fig. 7-1) which illustrates the pla-

cement of the procedure declarations.

21

| i Suan Stee NrRSIS. achiatcuate

0 S AR

e T 4

r

r—

—r—y
YT e e

ERE s SR L

~

Y

F1 LA b § bl
Vo
I

RPN S S SR

T T R TR TR T v e R e e T T

11/13/78 M.I.T. LINCOLN LABORATORY FORTRAN PREPROCESSOR LFP 02.01
10:07:33 PAGE 1
IWIDTH 72 PROO0OLO

; INTERATIVE PROGRAM FOR PDP-10 PRO00020

;TO COMPUTE THE SQUARE ROOT OF X. PRO00030

3 STOP WHEN X IS NEGATIVE. PRO0004O

PRO00050

00001 REAL X,SQRTX PR0O00060
00002 REPEAT UNTIL (X .LT. 0.0) PRO00070
00004 - READ-IN-A~-VALUEB-OF-X PRO0008O
00006 . IP (X .GE. 0.0);O0NLY WHEN X IS POSITIVE PRO00090
00007 + .+ COMPUTE-SQRT-OF-X PRO00100
00009 « « TYPE-QUT-THE-RESULT;BOTH X AND SQRTX PROOO110
00011 « ee FIN PROO0120
00012 «+ +FIN PROOO130
00013 STOP; HALT EXECUTION PROOOL140
00014 TO READ-IN-A-VALUE-OF-X PROOOL 50
00015 . TYPE 10 PRO00160
00016 10 . PORMAT(' X = *,8) PRO0OO170
00017 « ACCEPT 20,X PROOO180
00018 20 . FORMAT(F);FREE FORMAT INPUT PRO00190
00019 o0 oFIN PRO00200
00020 TO COMPUTE-SQRT-OF-X SQRTX=SQRT(X) PRO00210
00023 TO TYPE-OUT-THE-RESULT PR0O00220
00024 . TYPE 30,X,SQRTX PRO00230
00025 30 . PFORMAT(' THE SQRT OF ',F7.2,' IS ',F7.2) PRO00240
00026 « o FIN PRO00250
00030 END PRO00260

PROCEDURE CROSS-REFERENCE TABLE

00020 COMPUTE-SQRT-OF-X
00007

00014 READ-IN-A-VALUE-OF-X
00004

00023 TYPE-OUT-THE-RESULT
00009

NO DIAGNOSTICS

26 LFP LINES SCANNED, 30 FORTRAN STATEMENTS GENERATED

Fig. 7-1. Internal procedure example.

22

LIRNON # (Db

4

—

L e 0 B SN o

——

T

s
’

Notes concerning internal procedures:

1.

A _a e . DL U

All internal procedure declarations must be placed at the
end of the program just prior to the END statement. The
appearance of the first "TO” statement terminates the body
of the program. The translator expects to see nothing but
procedure declarations from that point on.

The order of the declarations is not important. Alphabetical
by name is an excellent order for programs with a large
number of procedures.

Procedure declarations may not be nested. In other words,
the scope of a procedure may not contain a procedure
declaration. It may of course contain executable procedure
references.

Any procedure may contain references to any other procedures
(excluding itself).

Dynamic recursion of procedure referencing is not permitted.

All program variables within a main or subprogram are global
and are accessable to the statements in all procedures
declared within that same main or subprogram.

There is no formal mechanism for defining or passing parame-
ters to an internal procedure. When parameter passing is
needed, the Fortran function or subroutine subprogram mecha-
nism may be used or the programmer may invent his own para-
meter passing methods using the global nature of variables
over internal procedures.

The LFP translator separates procedure declarations on the
1isting by dashed lines as shown in the preceding example.

Internal procedure references called from inside nested DO
Loops is not recommended.

23

8.0 CONTROL STATEMENTS

Statements which supply information to the LFP translator during pro-
cessing are called control statements. These statements, denoted by a

control character in column 1, allow user control over the format

h --T"’Y," ".-'."d‘. -

(appearance) of the LFP listing and permit the inclusion of the contents
of other files in the source.

A control statement, in general, will contain 3 items:

control This 1s a percent sign (X) in column 1.

character This character may be changed by a

CONTROL control statement. See
section 8.1.2.

MRAMEEAS” I

—v—yy
4 -l

control This is a string from 1 to 8

word characters in length that denotes
the control card type and must not
contain imbedded blanks.

’ argument This is either a numeric or alpha-
' betic string (optional for some
[keywords).

f The only requirement on the control statement format is that the

i! control word comes before the argument and that they are separated by at
least one blank. Otherwise, the control word and argument are typed in a
field-free format.

Each control word may be recognized from a subset of the complete

Py

control word, e.g., the control word INCLUDE can be recognized by an I,
IN,..., or INCLUDE. The minimum recognition pattern is denoted by the

- capital letters in each control word.

-

24

Fy—

~————————

AR

ey T R R T e T T L TR T e s . A & e @ e s e
I A T B -

All statements will be listed in the LFP listing except those that
follow a NOLIST control. A subsequent LIST control statement will negate
the effect of a NOLIST.

Control statements can occur anywhere in the user's LFP source file or

in the included files.

8.1 Listing Format Controls

The format coantrol statements control the appearance of the LFP

listing such as page width, spacing and page length, etc.

8.1.1 Comment delimiter X COMment char Default ;

This statement defines the comment field delimiter character,
which should not be part of the standard Fortran character set for obvious
reasons. A comment field may be placed on any LFP source statement
including control statements. The delimiter does not have to be separated
from the LFP statement by a blank.

Examples:

XCOM $
) 4 COMMENT ; § change delimiter back to a ;
The first example changes the current comment delimiter to a §.
Example 2 then changes the delimiter back to a ; (the field "$ change

delimiter back to a ;" is treated as a comment).

25

SATabaE 7~ mecan

Tl

oy

"t

p--

AAtEn an el R { i

—p

-

AN |

e GBLZBA 2004
-~ (.

s al

8.1.2 Control character X Control chars Default 2%

This control statement allows the user to define a character or a
set of characters that will identify a control statement. Caution - Do
not use the character C or regular comments will be flagged as BAD CONTROL
CARDS.

Unrelated examples:

XC * ; change control character to a *

X CON +-AX

XCONTROL i+

In example 2 any statement with a +, -, A, or X in column 1 is
treated as a control statement. In example 3 the control character is set
to , the field ";+" 1is an inline comment.

If the argument is not present the default control character is

assumed.

8.1.3 Double Spacing % DS

This control statement will initiate double spacing on the LFP

listing. Errors are still single spaced. Double spacing 18 done by

carriage control.

8.1.4 Heading % Heading character string

This control statement defines a character string that will print
as heading information at the top of each output page of the LFP listing.
The string is not delimited by single quotes and may contain imbedded
blanks up to a length of 69 characters.

If the heading length is larger than the page width, the heading is

truncated on the right.

26

A i —

-

I i ARt i

S~ e e e

The default Heading 1is

M.I.T. LINCOLN LABORATORY FORTRAN PREPROCESSOR

Examples:

ZH SUBROUTINE RENAME
XHEADING SYSTEM RS2 -TEST
ZHEAD INS SIMULATION;MODEL 4

In the third example the field “;MODEL 4" is treated as a comment and

will not be part of the heading.

8.1.5 Statement Numbering X LABEL XYZ

The LABEL control statement determines the method of statement
numbering on the LFP listing. The user is presented with the following
choices:

1. FORTRAN line numbers. These are internally generated by the
compiler and are affixed to the listing output to the left of
the statements. They are not to be confused with statement
labels (found in columns 1 - 5). FORTRAN line numbers are
sequential from card to card, however, some FORTRAN compilers,
e.g., IBM, do not number comments or continuations.

2. LFP line numbers. These are internally generated by LFP and
are sequential from statement to statement.

3. Line tags. These are the 8 column identification field found
in columns 73 - 80 of the input LFP statements.
In the LFP listing of a sample program in Section 11, the num-
bers to the left of the statements are FORTRAN line numbers while those on
the right side are line tags. These were chosen by the options available

for the XYZ argument field on the LABEL control statement.

27

e e e e A e e e el

| I ua A I I A A AP B NI Ri

Field Value Description

Increment by 1 the FORTRAN line number
for every line of FORTRAN generated.
This corresponds to most CDC and
MODCOMP compilers.

t

1 Increment by 1 the FORTRAN line number
for every line of FORTRAN generated
except comments or continuations.

This is standard for IBM machines.
DEFAULT .

& Y 0 Put LFP line numbers to the left of
. the source statements.

| Put the FORTRAN line numbers as deter-
mined by the field X to the left of
the source. DEFAULT.

Z 0 Put LPFP line numbers to the right of
the source.

1 Put the 8 column line tag to the right
of the source. DEFAULT.

2 Have no field to the right of the source.

The sample LFP listing in Section 1l was prepared with the default

LABEL control statement.

Examples:

ZLABEL 111 ; This is the default

XLABEL ; This resets the default to XYZ=11ll
ZLABEL 12 ; X=0,Ywl K Z=2

28

Py

1

Y

v T
P

A

8.1.6 Left Adjust X LAdj

This control statement will left adjust the input source to column
7, f.e., all blanks from column 7 to the first nonblank character of each
source statement will be removed. This is particularly useful if the

source had been indented on input, because LFP does its own indenting.

. 8.1.7 # Lines/Page X line N

This statement specifies the number of printed lines on each page
of the LFP listing which includes 3 lines for the heading. Reasonable
values for N are betweea 50 and 60 for a line printer. For a terminal
with a roll of paper, N could be made very large which would prevent the
top of page headers from being written. The default iz 60 lines/page.

Examples:
AL 55
% LINE 60

8.1.8 Listing Control X LIST

This control statement generates the LFP listing. This may be
used in conjunction with the ZNOLIST control to selectively list portions

of the program. Initially the ZLIST control is in effect.

8.1.9 No Left Adjust X NOLAd)

This control negates the effect of the LADJ control, i.e., do not

left adjust the LFP source. NOLADJ is the default.

29

8.1.10 No Listing X NOList

The control turns off the generation of the LFP listing. Only the

presence of a LIST card will turn the listing back on. A NOLIST statement

- is printed except if it is the first record of the source file being
h processed.
8.1.11 Page Eject X Page N

This control statement forces a page eject on the LFP listing if N
is zero or missing. If N is positive, this statement acts as a con-
ditional page eject to keep blocks of the listing contiguous. If there
are fewer than N lines left on the page, then eject a page.

- If the LFP listing is double or triple spaced (see DS and TS

controls) the N means double or triple spaced lines.

!

E. Examples:

L @

{ X Page 20

o

T 8.1.12 Single Spacing % SS

This control will single space the LFP listing, which is the

default spacing.

8.1.13 Triple Spacing Z T8

y This control statement will triple space the LFP listing.
Note: This is done by carriage control, not inserting blank lines.

8.1.14 Listing Width X Width N

b« The width control statement specifies the page width of the LFP
listing in characters. This affects all output - including page headers

and the procedure cross reference table.

PP

. a4

30

P——

——

AR {

I NP T SR SR T\ - _

A

—y v ey ¥

v

TR

| V=i e S

N will usually range from 72 to 133 with 1 column being reserved for
carriage control. See the sample LFP listing in Section 11 with a column
width of 78. 17 coiumns are dedicated for statement numbering and
labelling leaving N-17 columns for the indented source statements. The
default page width is 110 columns.

Examples:

w133
ZWIDTH 80; SET WIDTH TO 80 COLUMNS

8.2 Inclusion of External Files

8.2.1 INCLUDE Command Z Include FILENAME FILETYPE

The INCLUDE control statement allows the user to include in the
source program the contents of other files. This is particularly effec-
tive in the usage of common blocks.

For example a series of common definitions are put in a file named
COMMON. The user's source program would contain a TINCLUDE COMMON state-
ment to include the common definitions. Included files may contain nested
ZINCLUDE statements up to a level of 40, however, recursive includes are
not allowed.

The filename must be a legitimate CMS filename. The default filetype

is LFP.
Examples:
%I CBLOCK1

% INCLUDE ABLOC
% INCLUDE DEFIN FORTRAN

31

YT T

-

Itk 7~ M

L e

If the filename 18 missing on the INCLUDE card or 1if the file does
not exist, the statement is ignored with diagnostic being 1issued to the
LFP listing and the terminal.

8.2.2 Include Expansion % INCExp N

This control statement controls the expansion of the XINCLUDE
file. If N is 1 the file is included, {f N is O the file is not included
in eithef the LFP listing or the generated Fortran. The default for N

is 1.
Examples:

XINCEXP O
Z INCE 1

32

,‘,fHVﬁ‘..-,, "

8.3 Control Statement Summary

ICOMment X
Dafine the comment delisiter charvecter X. Default is ;
IControl X
Define the coutrol character X. Default 1s %
108
Double space the LFP liscing
THeading CHARACTER STRING

Define the heading CHARACTER STRING to go at ths top
of each page of the LFP listisg.

Zlaclude FILENAME

Include the contests of the file = PILEMAME FILRTYPE in
the source file. The filetype amst be LFP.

LINCExp W
Coatrols the iaclusiom of s file on the INCLUDE card.
1f N is O the file is not included, 1f W is 1 the
file 1is included. Default = 1.

ILASEL XTI

-o

Modcomp PORTRAN lise numbering
Amdshl PFORTRAN lise nuaberiag (default)

4 0 LFP lise swmbers at left of listiag
1 FORTRAN line owmbers st left of listing (default)

z O LFP line sumbers at right of listing
1 Lins tage st right of listing (defeuls)
2 Ddlaske
ILADJ

Laft adjust the source to coluan 7, removiag blanke.
Iline n

Print N lines per page. Default = §0.
ILiet

Priat LFP listiag. Defsult.
ZINOLad §

Do not left adjust source to columa 7 (defsult).
TWOLLst

Turn off LFP listing.
IPage N

Bject a page {f W=0 or N is missing.
Zject a page if there are less than N lines left on a page.

188

Single space PP listing (default).
118

Triple epsce LFP listing.
Tuideh N

Width of LFP output listing in characters.
Dafault = 110

33

8.1.3

8.1.4

8.2.1

8.1.5

8.1.6

8.1.7

8.1.8

8.1.9

8.1.10

8.1.11

8.1.12

8.1.13

8.1.14

C et

-y

— -———y
DAL SR Sl

T

8.4 Control Statement Example - Typical Program Setup.

The following control statements at the beginning of each source
program generate a listing that greatly facilitates referencing.

ZNOLIST
XHEADING SUBROUTINE NAME
ZPAGE
ALIST
SUBROUTINE NAME

END
ANOLIST
ZHEADING SUBROUTINE N2
ZPAGE

ALIST
SUBROUTINE N2

END

34

cami

r
e
L
r
r
r
-
»
!
N
13
’
»
L
|
I

1

9.0 COMMENTS

Comments In LFP are recognized by the presence of a specified comment
delimiter in any column or by the traditional method of the character “C”
in column 1. All characters to the right of and including the delimiter
are considered the comment field.

Comments can be isolated, that is, the source statement is only a
comnené, or they can be inline, meaning a statement and a comment field
may be present on the same source line.

All source lines of LFP including control statements may contain
inline comments. There does not have to be a blank between the last
character of the statemeant and the comment delimiter.

Isolated comments are indented to the current LFP listing level if
columns 2-6 of the statement are blank. An inline comment is indented
only if the statement 1is indented.

Inline comment fields are stripped off the input statements before

the Fortran output is produced. No comments are sent to the generated Fortran.

Examples:

c NORMAL COMMENT
C THIS COMMENT WILL NOT BE INDENTED
H THE SEMICOLON IS THE DEFAULT DELIMETER
; THE DELIMETER MAY BE IN ANY COLUMN
A = SQRT(B*B+C*C); COMPUTE RADIUS OF CIRCLE
XCOMMENT ¢ ; CHANGE DELIMETER TO A §
DETERMINE -NEXT -EVENT$BY A TABLE LOOKUP

35

10.0 RESTRICTIONS AND CONVENTIONS

‘ 1f LFP were implemented by a nice intelligent compiler this section

would be much shorter. Thus the LFP programmer must observe the following

restrictions.
b l. LFP must invent many statement numbers in creating the FORTRAN
program. It does so by beginning with a large number (usually

99999) and generating successively smaller numbers as it needs
them. Do not use a number which will be generated by the
translator. A good rule of thumb is to avoid using 5 digit
statement numbers.

—~

2. LFP mst generate integer variable names. It does so by using
names of the form "Innnnn" when nnnnn is a 5 digit number
related to a. generated statement number. Do not use variables
of the form Innnnn and avoid causing them to be declared other
than INTEGER. For example the declaration "IMPLICIT REAL (A-2)"

>, leads to trouble. Try "IMPLICIT REAL (A-H, J-Z) instead.

T

3. The preprocessor does not recognize continuation lines in the
source file. Thus FORTRAN statements may be continued gince
the statement and its continuations will be passed through the
preprocessor without alteration. (See chapter 2.) However, an
extended LFP statement which requires translation may not be
continued. The reasons one might wish to continue a LFP state-
ment are 1) It is a structured statement or procedure declara-
tion with a one statement scope too long to fit on a line, or 2)
it contains an excessively long specification portion or 3) both
of the above. Problem 1) can be avoided by going to the multi-
F line form. Frequently problem 2) can be avoided when the speci-
fication is an expression (logical or otherwise) by assigning
the expression to a variable in a preceding statement and then
using the variable as the specification. Avoid continued IF
statements.

T

B A SE an on o

4. Blanks are meaningful separators in LFP statements: don't put
them in dumb places like the middle of identifiers or key words
and do use them to separate distinct words like REPEAT and UNTIL.

e

1 5. Let LFP indent the listing. Start all statements in col. 7 and
. the listing will always reveal the true structure of the

. program. (as understood by the preprocessor of course). The

- control statement ZLADJ allows for preindented source code.

) 36

y—rvv—u P

T el

po

e
P

r'.

PP T
,

—
-

e

As far as the preprocessor is concerned, FORMAT statements are
executable FORTRAN statements since it doesn't recognize them as
extended LFP statements. Thus, only place FORMAT statements
where an executable FORTRAN statement would be acceptable.

Don't put them between the end of a WHEN statement and the
beginning of an ELSE statement. Don't put them between proce-
dure declarations.

Incorrect Examples: Corrected Examples:
. WHEN (FLAG) WRITE(3,30) WHEN (FLAG)
30 FORMAT(7H TITLE:) . WRITE(3,30)
ELSE LINE = LINE+1 30 . FORMAT(7H TITLE:)
«+..FIN
ELSE LINE = LINE+!
TO WRITE -HEADER TO WRITE-HEADER
. PAGE = PAGE+1 . PAGE = PAGE+1
. WRITE(3,40) H,PAGE . WRITE(3,40) H, PAGE
«+.FIN 40 . FORMAT(70A1,13)
40 FORMAT (70Al1,13) oo +FIN
7. The preprocessor recognizes extended LFP statements by the pro-

cess of scanning the first identifier on the line. I1f the iden-
tifier is one of the LFP keywords IF, WHEN, UNLESS, FIN, etc.,
the line is assumed to be a LFP gstatement and is treated as
such. Thus, the LFP keywords are reserved and may not be used
as variable names. In case of necessity, a variable name, say
WHEN, may be slipped past the preprocessor by embedding a blank
within it. Thus "WH EN" will look like "WH" followed by "EN" to
the preprocessor which is blank sensitive, but line "WHEN" to
the compiler which ignores blanks.

In scanning a parenthesized specification, the preprocessor scans
from left to right to find the pareanthesis which matches the
initial left parenthesis of the specification. The preprocessor,
however, 18 ignorant of Fortran syantax including the concept of
Hollerith constants and will treat Hollerith parenthesis as syn-
tactic parenthesis. Thus, avoid placing Hollerith constants
containing unbalanced parenthesis within specifications. If
necessary, assign such constants to a variable, using a DATA or
assignment statement, and place the variable in the
specification.

37

r - - - TR W W W WY T YT W e Y e T . e e e e e R I S

-, ox . v .
el

% Incorrect Example: Corrected Example:

% IF (J.EQ.'(") WP o= (

b IF(J,.B2Q.LP)

ji 9. LFP will not supply the statements necessary to cause

- appropriate termination of main and sub-programs. Thus it is

Il necessary to include the appropriate RETURN, STOP, or CALL EXIT

statement prior to the first internal procedure declarationm.
Failure to do so will result in control entering the scope of
the first procedure after leaving the body of the program. Do
not place such statements between the procedure declarations and
the END statement.

10. LFP ignores blank lines and does not pass comments or blank
lines on to the compiler. Thus blank lines can be used for
prograa clarity without worry.

11. Some FORTRAN compilers allow branching in and out of DO
LOOPS -other compilers prohibit this. The usage of internal pro-
cedure references inside DO structures is not recommended.

Al
P amitt L MR

Mearaens Zam st s an
-

MR

\ o

38

———
-

[‘ﬁ—v i

U W NP T e e S . - — A A - : - . - . P

N ey W R TR TN TN T, TR T Ty e TR TRy e T - T T e T T e T T & T s T
2 3 v - - . - f

11.0 EXAMPLE OF LFP LISTING

‘ The user's program is named QDROOT LFP which is listed in Fig. 11-2.
: Figure 1l1-1 is the resulting LFP listing. Note the correlation bet-

ween the line numbers on the left of the LFP listing with the lines on the
! Fortran compiler output (Figure 11-3). This is accomplished by the

LABEL coatrol card (Section 8.1.5).

TaE .

-y v e v—w—y e~y W

39

T

g
g
g

Y

Y

C an B anfie il outiEas

05/14/81 SUBROUTINE QDROOT SOLVE QUADRATIC FORMULA LFP 02.01
16:11:19 PAGE 1
ALIST QDR0O0050

00001 SUBROUTINE QDROOT(A,B,C,X1,X2,IERR) QDRO0060
QDROOO70

00002 REAL*8 A,B,C,X1,X2,DISCRM,TERM1,TERM2 QDR00080
QDR0O0090

; SOLVE QUADRATIC EQUATION A*X*X + B*X + C = 0 QDROO100

;FOR X1 AND X2. QDROO110

; IERR IS AN ERROR CODE QDR0O0120

H -2 A AND B ARE 0.0---NO ROOTS QDR0O0130

H -1 DISCRIMINANT < = 0.0---IMAGINARY ROOTS QDROO140

H 0 NORMAL RETURN---2 REAL ROOTS QDRO0150

; 1 HIGH ORDER COEFFICIENT ,A, IS ZERO QDROO160

QDR0O0170

00003 IERR=0 QDR0O0180
00004 WHEN (A .NE. 0.0D0) QDR00190
00005 . DISCRM=B*B-4.0D0*A*C; CALCULATE THE DISCRIMINANT QDR00200
00006 . WHEN (DISCRM .LT. 0.0DO) QDR0O0210
00007 . + IERR=-1; SET NEGATIVE DISCRIMINANT CODE QDR00220
00008 « .+ X1=0.0D0 QDR00230
00009 . + X2=0.0DO QDR0O0240
00010 .« «++.FIN QDR0O0250
00011 . ELSE QDR00260
00011 .« « TERMl=-B/(2.0D0%A) QDR00270
00012 . « TERM2=DSQRT(DISCRM)/(2.0D0*A) QDR00280
00013 « + X1=TERM1+TERM2; CALCULATE ROOTS X1 and X2 QDR00290
00014 « « X2=TERM1-TERM2 QDR0O0300
00015 e ««.FIN QDRO0310
00015 .+ .FIN QDR0O0320
00016 ELSE; THE HIGH ORDER COEFFICIENT IS ZERO QDR0O0330
00016 . WHEN (B.NE.0.0DO) QDR00340
00017 « +» Xl==C/B QDR0O0350
00018 . o X2=X1 QDR0O0360
00019 . + IERR=l QDR00370
00020 . +..FIN; WHEN QDR0O0380
00021 . ELSE; A AND B ARE BOTH 0.0 QDR00390
00021 « «+ Xl=0,0D0 QDR0O0400
00022 . .« X2=0.0D0 QDR0O0410
00023 + « IERR==2 QDR00420
00024 « +++FIN; ELSE QDRO0430
00024 «++FIN QDR00440
00025 RETURN QDRO0450
00026 END QDR0O0460

NO DIAGNOSTICS

46 LFP LINES SCANNED, 26 FORTRAN STATEMENTS GENERATED

Fig. 11-1. LFP listing of user's prograa.

40

Dbt et Mhatnt JEhat 4 Cl - P [A i M

FILE: QDROOT LFP A 5/14/81 16:09 M.I.T. LINCOLN LABORATORY

INOLIST
THEAD SUBROUTINE QDROOT SOLVE QUADRATIC FORMULA
ZWIDTH 78
ZPAGE
ILIST
SUBROUTINE QDROOT(A,B,C,X1,X2,IERR)
REAL*8 A,B,C,X1,X2,DISCRM,TERM], TERM2
. ;SOLVE QUADRATIC EQUATION A®X*X + B*X + C = 0
;FOR X1 AND X2
;IERR IS AN ERROR CODE
; -2 A AND B ARE 0.0---NO ROOTS
-1 DISCRIMINANT < = 0.0 —-IMAGINARY ROOTS
; 0 NORMAL RETURN~---2 REAL ROOTS
; 1 HIGH ORDER COEFFICIENT ,A, IS ZERO
IERR=0
WHEN (A .NE. 0.0D0)
DISCRM=B*B-4 .0DO*A*C; CALCULATE THE DISCRIMINANT
WHEN (DISCRM .LT. 0.0)
IERR=-1; SET NEGATIVE DISCRIMINANT CODE
X1=0.0D0
X2=0.0D0
FIN
ELSE
TERM1=-B/(2.0DO*A)
TERM2=DSQRT(DISCRM)/(2.0DO*A)
X1=TERM1+TERM2; CALCULATE ROOTS X1 AND X2
X2=TERM1-TERM2
FIN
FIN
ELSE; THE HIGH ORDER COEFFICIENT IS ZERO
WHEN (B.NE.O.0DO)
X1=-C/B
X2=X1
IERR=1
FIN; WHEN
ELSE; A AND B ARE BOTH 0.0
X1=0.0D0
X2=0.0D0
IERR=-2
FIN; ELSE
FIN
RETURN
END

FPig. 11-2. User's source program.

41

QDRO0010
QDRO0020
QDR00030
QDR00040
QDRO00S0
QDRO0060
QDR00070
QDRO0080
QDRO0090
QDROO100
QDRO0110
QDR00120
QDR0O0130
QDR0OO140
QDRO0150
QDRO01 60
QDROO170
QDR00180
QDR00190
QDR00200
QDR00210
QDR00220
QDR00230
QDR00240
QDR00250
QDR00260
QDR00270
QDR00280
QDR00290
QDR00300
QDR00310
QDR00320
QDR00330
QDR00340
QDR00350
QDR00360
QDR00370
QDR00380
QDR00390
QDR00400
QDRO0410
QDR00420
QDR00430
QDR00440
QDR004 50
QDR00460

T

'1—1—1 e

WPy

FORTRAN IV G1 RELEASE 2.0 QDROOT

0001 SUBROUTINE QDROOT(A,B,C,X1,X2,IERR)
0002 REAL*8 A,B,C,X1,X2,DISCRM,TERM1,TERM2
0003 IERR=0

0004 IF(.NOT.(A .NE. 0.0D0)) GO TO 99998
0005 DISCRM=B*B-4 .ODO*A*C

0006 IF(.NOT.(DISCRM .LT. 0.0)) GO TO 99996
0007 IERR=-1

0008 X1=0.0D0

0009 X2=0.0D0

0010 . GO TO 99997

0011 99996 TERM1l=-B/(2.0DO*A)

0012 TERM2=DSQRT(DISCRM)/(2.0DO%*A)

0013 X1=TERM1+TERM2

0014 X2=TERM1-TERM2

0015 99997 GO TO 99999

0016 99998 IF(.NOT.(B.NE.0.0DO)) GO TO 99994
0017 Xl= -C/B

0018 X2=X1

0019 1ERR=1

0020 GO TO 99995

0021 99994 X1=0.0D0

0022 X2=0.0D0

0023 IERR=-2

0024 99995 CONTINUE

0025 99999 RETURN

0026 END

DATE = 81134

Fig. 11-3. FORTRAN 1listing of user's program.

42

QDRO0060
QDRO0080
QDRO0180
QDRO0190
QDR00200
QDR0O0210
QDR00220
QDR00230
QDR00240
QDR0O0250
QDR00270
QDR00280
QDR00290
QDR00300
QDRO0320
QDR00340
QDR00350
QDRO0360
QDR0O0370
QDR00380
QDR0O0400
QDRO0410
QDRO0420
QDR00440
QDRO04 50
QDR00460

05/14/81
16:12:20

SYMBOL

99994 -
99995 -
99996 -
99997 -
99998 -
99999 -
A -
B -
c -
DISCRM
DSQRT

IERR

QDROOT
RETURN -
TERM1
TERM2
X1 -
X2 -

16
20
6
10
4
15
1AG
1AG
1AG
2RL
12
1AG
1SN
25RE
2RL
2RL
1AG
1AG

SUBROUTINE QDROOT(A,B,C,X1,X2,IERR)

21*
24*
11#
15%
l6*
25%
2RL
2RL
2RL
Sm

3=

11=

12=
2RL
2RL

REFERENCES = == aa

4 5 11
5 11 16
5 17
6 12
7= 19= 23=
13 14
13 14
8= 13= 17=
9= l4= 18=

THE FOLLOWING SYMBOLS UNDEFINED OR FUNCTION CALLS

DSQRT -

12

END OF XREF PROCESSING

Fig 3 11-1‘ 3

43

XREF 02.02

PAGE

12
17

18
22=

Variable cross reference listing.

21=

1

Yl

i)
LI

T LTI

w———y v -y

12.0 ERRORS

This section provides a framework for understanding the error
handling mechanisms of version 02.01 of the LFP preprocessor. After each
execution of LFP the message NO DIAGNOSTICS is sent to the terminal and
the listlng {f there were no errors. If there were errors the message
ERRORS - MAJOR xxxxx, MINOR yyyyy, CONTROL CARDS zzzzz is printed.

iFP examines an LFP program on a line by line basis. As each line
is encountered it is first subjected to a limited syntax analysis followed
by a context analysis. Errors may be detected during either of these
analyses. It is also possible for errors to go undetected by the

preprocessor.

12.1 Syntax Errors

The fact that a statement has been ignored may, of course, cause
some context errors in later statements. For example the control phrase
“WHEN (X(I).LT.(3+4)" has a missing right parenthesis. This statement
will be ignored, causing as a minimum the following ELSE to be out of
context. The programmer should of course be aware of such effects. More

18 said about them in the next section.

44

T z i Niaian ot aun gua g

v

hCHEE an sae une e 4

12.2 Context Errors

If a statement successfully passes the syntax analysis, it is
checked to see if it is in the appropriate context within the program. For
example, an ELSE must appear following a WHEN and nowhere else. If an ELSE
does not appear at the appropriate point or if it appears at some other
point, then a context error has occurred. A frequent source of context
errots.in the initial stages of development of a program comes from
miscounting the number of FIN's needed at some point in the program.

With the exception of excess FIN's which do not match any preceding
control phrase and are ignored all context errors are treated with a uni-
form strategy. When an out -of -context source statement 1is encountered,
the translator generates a "STATEMENT(S) NEEDED” message. It then invents
and processes a sequence of statements which, if they had been included at
that point in the program, would have placed the original source statement
in a correct context. A message is given for each such statement
invented. The original source statement is then processed in the newly
created context.

By inventing statements the traanslator is not trying to patch up the
program so that it will run correctly, it is simply trying to adjust the
local context so that the original source statement and the statements
which follow will be acceptable on a context basis. As in the case of
context errors generated by ignoring a syntactically incorrect statement,
such an ad justment of context frequently causes further context errors

later on. This is called propagation of context errors.

45

_A_il.‘_.LA‘L"' - o o P

——r

12.3 Undetected Errors

LFP is ignorant of most details of FORTRAN syntax. Therefore most
FORTRAN syntax errors will be detected by the FORTRAN compiler and not by
LFP. In addition, there are two major classes of LFP errors which will be
caught by the compiler and not the preprocessor.

The first class of undetected errors involves misspelled LFP
keywor&s. A misspelled keyword will not be recognized by the preprocessor.
The line on which it occurs will be assumed to be a FORTRAN statement and
will be passed unaltered to the compiler which will undoubtably object to
it. A common error, for example, is to spell UNTIL with two L's. Such
statements are passed to the compiler, which then produces an error
message. The fact that an intended control phrase was not recognized fre-
quently causes a later context error siace a level of indentation will not
be triggered.

The second class of undetected errors 1ﬁvolves unbalanced
parentheses. (see also note 8 in Section 10.0). When scanning a
parenthesized specification, the translator is looking for a matching
right parenthesis. If the matching parenthesis is encountered before the
end of the line the remainder of the line is scanned. If the remainder is
blank or consists of a recognizable internal procedure reference, all is
well. If nelther of the above two cases hold, the remainder of the line
is assumed (without checking) to be a simple FORTRAN statement which is
passed to the Compiler. Quite often this assumption may be wrong. Thus

the statement

"WHEN (X.LT.A(I)+Z)) X = 0"

46

———— = e

A~ DR

od G B

vy Py
I T R

is broken down into

keyword "WHEN"

specification "(X.LT.A(I)+2)"

FORTRAN statement ") X = Q"

Needless to say, the compiler will object to ") X = Q0" as a
statement.

Programmers on batch oriented systems have less difficulty with
undetected errors due to the practice of running the program through both
the preprocessor and the compiler each time a run is submitted. The com-
piler errors usually point out any errors undetected by the preprocessor.

Programmers on timesharing systeams tend to have a bit more dif-
ficulty since an undetected error in one line may trigger a context error
in a much later line. Noticing the context error, the programmer does not
proceed with compilation and hence is not warned by the compiler of the

genuine cause of the error. One indication of the true source of the

error may be an indentation failure at the corresponding point in the listing.

LFP ERROR LIST

END statement is missing

Translator has used up allotted space for tables
CONDITIONAL or SELECT apparently missing
ELSE necessary to match FIN

FIN necessary to match line #

no control phrase for FIN to match

only TO and END are valid at this point
WHEN to match following ELSE

procedure already defined

procedure invoked but not defined

invalid character in statement label field
recognizable statement followed by garbage
left parenthesis does not follow keyword
missing a right parenthesis

valid procedure name does not follow TO

47

e aae a0 L) Sma o

:

Rodiadih B et gt St

T T ST TwW T W W W Tt v o e T e R T e

12.4 Control Card Errors

There are 4 control card error messages.
1. BAD INCLUDE FILENAME = XXXXXXXX YYYYYYYY

This indicates that the file XXXXXXXX YYYYYYYY is not found.
The include card is ignored.

Reasons - misspelled filename or filetype
- account not shared
- specified file not blocked correctly
2. RECURSIVE INCLUDE DECKS NOT ALLOWED
An include deck cannot include itself. The include card is ignored.
3. INCLUDES NESTED LEVEL GREATER THAN 40
4. BAD CONTROL CARD

This catchall error indicates something was wrong with the
control card.

Possible reasons - misspelled control word
- forgot control word
= no argument present when one has needed
- bad argument type
= bad argument

This error results in an ignored control card.

This error message is sent to the LFP listing and also to the
terminal. The LFP line number (see 8.1.5 under LABEL control) is affixed

to the error prior to printing at the terminal.

48

t_t
b

Ty ‘?".‘:.‘ .‘ .'. ¢

p > yeie

N) . pReEsLe:

>

ke |

T
A :

13.0 PROCEDURE FOR USAGE ON CMS - EXEC LPG

LFP at Lincoln Laboratory has been implemented on an Amdahl 470
system with the CP/CMS operating system.
The procedure which executes the LFP preprocessor is called LPG (see
Fig. 13-1), which aiszo will optionally perform macro substitution (see
Section 15), generate a variable cross reference listing (Section 16) and
compile the user's source prograa.
To gain access to the various EXErS and MODULES associated with LFP,
type the following CMS command or put it in the PROFILE EXEC.
SHARE TOOLS
The LPG EXEC may then be executed by typing
LPG FN <FM> <(OPTIONS>
where
FN PFilename of user's program with a filetype of LFP

FM Filemode of disk on which the user's program resides. The

default 1is the "A" disk.

The following options are available.

COMP The generated FORTRAN is compiled by the G compiler (FORTGI).
NOCOMP The generated FORTRAN is not cowmpiled.
DISK The listing output from the preprocessor is sent to disk

(filename = FN, filetype = LFPLIST, filemode = A). The

variable cross reference listing is sent to disk (filename =

FN, filetype = XRLIST, filemode = A). These files contain

carriage control and may be printed with the CMS commands:
PRINT FN LFPLIST (CC

PRINT FN XRLIST (CC

49

— = r“v‘_‘ ———,

v

,

YT TR W YTy

BN Sacens

......

PR The listing output from the preprocessor and the variable
cross reference program are sent to the systems line printer.

NOPR No listing output is generated.

XREF Generate a variable cross reference table (see Section 16
and Figure 11.4).

NOXREF Do not generate a cross reference table.
MACRO Expand any macro definitions (see Section 14).
NOMACRO Do not expand macros.

SAVE The generated FORTRAN rewmains on the disk.

NOSAVE The generated FORTRAN is erased subsequent to processing.

The symbols < > denote that the enclosed field is optional. All
underlined options are the default. There are no abbreviations allowed
for any of the above options.

The CMS command

LPG FN
is equivalent to
LPG FN A (COMP NOMACRO NOXREF NOSAVE DISK
The options list above may be printed at a terminal by typing

LPG ?

50

—p Ty
comd. .o

SOURCE PROGRAM
IN LFP

NAME = FN LFP

28 ~ AEOVSCAOMIDY ™ s

SOURCE PROOGRAM
IN FORTRAN WITH
MACRO CONSTRUCTS

) W

p
TR

SOURCE PROGRAM
WITH MACROS
EXPANDED

VARIABLE CROSS
REFERENCE LISTING

NAME = FN XRLIST

RELOCATABLE
FORTRAN BINARY

G

NAME = FN TEXT

Fig. 13-1. LPG exec structure,

51

— —— A M B aane sose e s e v " " L AR S T LA

T 14.0 PROGRAMMERS' GUIDE TO LFP

14.1 Subroutine Description

LFP consists of a large main program (1800 lines) and approximately

30 subroutines (4200 lines). The purpose of each subroutine is listed

below.

g Name Function

;: BLNKUT Converts any leading zeroes
- in a character string to spaces
't‘ CATNUM Convert a number to a

% character string

-

g CATSTR Concatenate 2 character

- strings

L.

f’ CATSUB Concatenate a character

g string to a character substring
%

. CHTYP Classify a character to type
h CLOSEF Write # of diagnostics to

F terminal and listing and

close files.

N CONTOP Controls the paging in the

g LFP 1listing
ﬁ CPYSTR Copy a character string

i CPYSUB Copy a character substring
ii GET Processes control statements
0 and inline comments

i GETC Get a specified character

- from a character string

[

g

u.

-

' 52

i r EEE P T TR

vy

T ————y

GETCH
GETL
GETTOK

HASH

INIT

LFP

LITNUM
NEWNO

OPENFP

PUT
PUTC
PUTCH
PUTL

PUTNUM

STREQ

53

Get a specified character
from a computer word

Read the next line of LFP
from the mainstream or from
an included file

Get a token

Compute Hash functiocn

Initialization

Remove any blanks in a
source statement between
coluan 7 and the first
nonblank character

Main program

Convert a numeric character
string to binary

Generate the next sequential
statement label

File initialization

Generate the FORTRAN, LFP
listing and the error output

Replace a character in a
character string

Replace a character in a
computer word

Write 1 line to the FORTRAN,
LFP listing or error file

Put a 5 digit number at the
beginning of a character
string

Logical character string
equality compare

[P B

STRLT
TPAGE

TRIM

FILENAME
3 XFL6
XFL6

XFL7

AP A

e

YT

XFL7

FILETYPE

LFP

FORTRAN

LFP

FORTRAN

54

Logical character string
compare

Generate top of page header
on the LFP listing

Truncate trailing blanks
from a character string

The named files contain the source code as listed below:

CONTENTS

Main program in LFP
Bootstrap of XFL6 LFP
CATNUM

CATSUB

CHTYP

CPYSTR

CPYSUB

GETC

GETCH

HASH

PUTC

PUTCH

PUTNUM

STREQ

STRLT

NEWNO

Bootstrap of XFL7 LFP

PR PR

3
h::.'7 LFPUTIL LFP BLNKUT
:L! CLOSEF
‘ CONTOP
£ GET
‘ GETL
GETTOK
:.:5 INIT
; LADJ
LITNUM
OPENF
K PUT
; PUTL
TPAGE
! TRIM
;_1: LFPUTIL FORTRAN Bootstrap of LFPUTIL LFP
LFPSUB ASSEMBLE CATSUB
F CATSTR
- CPYSTR
- CPYSUB
- CATNUM
EE PUTNUM
: stREQ
: STRLT
‘ CHTYP
GETCH
i
[
[55
bl

]

PUTCH

? NEWNO
asn
E LFPSUB2 ASSEMBLE PUTC

} GETC

f TRIM ASSEMBLE TRIM

; Execs relating to LFP and their purposes are.

- Name Purpose

MAKELFP Linkedit LFP (generate LFP MODULE)
» LFPLIST Describes LFP

T LFP Invokes LFP

; LPG Invokes LFP, Macro processor,

) variable cross reference processor
i! and the Fortran G compiler.

f MACRO Invokes the Macro processor

XREF Invokes the variable cross

reference processor

Py

-l

— e -

A 3

R e A

14.2 1Installation of a New LFP Version.

14.2.1 Bootstrapping LFP.

To bootstrap LFP, invoke the CMS commands:

FORTGL XFL6

FORTHX LFPUTIL (OPT(3)
ASSEMBLE LFPSUB2
ASSEMBLE LFPSUB
ASSEMBLE TRIM

LOAD XFL6 LFPSUB2 TRIM LFPSUB LFPUTIL (NODUP)
GENMOD LFP

14.2.2 Installation parameter defaults

The user may wish to change certain default parameters in LFP
depending on the computer system characteristics. It is recommended,
hovever, that changes be made to the source version written in LFP--not
the Fortran version and that the equivalent Fortran of each LFP version be
archived. The following changes may be made:

14.2.2.1 Number of print lines/page

In subroutine INIT this is variable LNPPG which is currently

gset to 60.

14.2.2.2 Number of columns/page (width)

In Subroutine INIT this is variable LWIDTH which 1is

curreatly get to 110. When subroutine GET processes a faulty WIDTH control

statement LWIDTH is set to 110.

14.2.2.3 Default Heading

Subroutine INIT contains a data statement for the variable

HDRDEF which defines the default heading.

57

Ty e w wr cywee = e = = g
SETTITUTY AT . .
' . NESTR R

L VY T Y
e : PN

vy

T T T Y
A Ve,

14.2.2.4 LFP Version Number

Subroutine TPAGE contains a data statement for the variable
VERSN to define the version number.

14.2.2.5 Default Control Character

Subroutine INIT defines the default control character. To
change the default control character to an asterisk add the following
code.

INTEGER STAR
;TAR-92 ; HEX 5C
Replace the 2 lines

CALL PUTC (1, CNTRCH, PCNTIC)
SVCNTC=PCNTC

with

CALL PUTC (1, CNTRCH, STAR)
SVCNTC=STAR

When subroutine GET processes a faulty CONTROL card, the percent sign

is restored as a control character.

14.2.2.6 Default Statement Labelling/Countiang

In subroutine INIT variable IBMMET controls the statement

counting.
IBMMET=0 number all generated FORTRAN statements sequentially
IBMMET=1 number all generated FORTRAN statements sequentially

except comments or continuation records.

Variasble STNUML controls the line number at the left of the listing.

STNUML=0 Use the LFP line number (sequential from record to
record)
STNUML=1 Use the FORTRAN statement number as determined by IBMMET
58

TR

e
R

—vY

— YT

Variable STLABR controls the line number at the left of the listing:

STLABR=0 Use LFP Line number (5 columns)

STLABR=1 Use line tags (col 73-80) of input source record (8
columns)

STLABR=2 blank field

Subroutine GET redefines these fields if a faulty LABEL control sta-

tement 18 processed.

14.2.2.7 1/0 Units

The I/0 units are defined at the end of subroutine INIT. The unit
numbers referenced by the FILEDEF statements in the exec LFP would also

have to change.

14.2.3 Comment Delimiter

The comment delimiter is defined in subroutine INIT by the statement
CMTCH=SCLN
where SCLN is defined to be 94 Dec or 5E Hex.
When subroutine GET processes a faulty ICOMMENT control stateaent,

the semicolon is restored as the romment delimiter.

59

oo et i T - PSS O~ VP S P WP\ —— a3 _‘_‘-A_._A_*J

AR { LY AT

15.0 MACRO PROCESSOR

15.1 Description

The MACRO Processor, as described in chapter 8 of Software Tools (2]

by Kernighan and Plauger, has been implemented on the Amdahl 470. This
section briefly describes the function of the MACRO processor.

Macros are ugsed to extend an existing language; tokens (alphanumeric
character strings) may be defined and the subsequent usage of the token
results in the replacement of the token by the macro definition.

The format of the macro definition for simple substitution is:

DEFINE(TOKEN,DEFINITION)

where DEFINE 1is a keyword which starts in column 1. There must be no
imbedded blanks internal to DEFINE and no blanks between DEFINE and the
left parenthesis.

Tokens must be alphanumeric (A-Z, 0-9, $) and contain at least 1
character. Examples of legitimate tokens are:

A ALPHABET 8DOL $NUM 5

$ $Al $5 VERYVERYLONGTOKEN

An example of a macro definition is:
DEFINE(PI,3.145159265)
The macro reference for "PI" in the following statement:
CIRCUM = 2.0%PI*RADIUS
results in

CIRCUM = 2.0%3.14159265%RADIUS

60

A~

T

— YV vy

-

T

‘‘‘‘‘‘‘‘‘

Another example of a macro definition is:
DEFINE(RANGECELLS, 50)
DEFINE(AZIMUTHCELLS, 30)
The macro references for RANGECELLS and AZIMUTHCELLS in the state-
ament
INTEGER*4 AMPTUD(RANGECELLS,AZIMUTHCELLS)
generates the code

INTEGER*4 AMPTUD(50,30)

Macros may also have arguments; the format of this type of macro
definition is:

DEFINE(TOKEN, REPLACEMENT($1,$2,$3,...))

An example macro definition with arguments is:

DEFINE(ADD, $1+$2)
The reference to "ADD" in the statement

C = ADD(A,B)
results in

C = At+B

Macro ignores excess arguments during substitution, however, if an
argument is not present the field $N is used.

Special care must be taken when the replacement string contains a

macro reference, e.g., suppose a macro definition has been written for "A".

DEFINE(A,B)

61

i NN

i

B4 S e e b o e ot

—
.
S
'

and that later on the token "A" is to be replaced by the literal "C." The
macro definition

DEFINE (A,C)
would result in all occurrences of A and B to be replaced by the literal
"Cc".

To prevent this from happening MACRO allows escape characters; a
left and right bracket enclosing a token will result in the token being
copied to the Macro definition table without any substitutions.

Thus to properly redefine the token "A" by the string "C" the defi-
nition should be.

DEFINE((A],C)

Macro also contains the built in functions, INCR (token
incrementing), SUBSTR (token substring) and IFELSE (conditional code
generation). The reader is referred to Chap. 8 of Ref. 2 for an explana-
tion.

Sample macro definitions and references are listed in Figure 15.1.

The results after being processed by MACRO are listed in Figure 15.2.

62

" "r>rl .

T Ty

g

j bttt A g

v——y
LA T

54l

Larakatan, I autalt aiihie

kSl

St e et T w a

FILE: MTEST INPUT Al F 80 54 6 2/18/81

*CASE 1 PAGE 265
DEFINE(SKIPBL,WHILE($1($2) == BLANK I $1(82) == TAB) $2 =$2 +1)
SKIPBL(S)
SKIPBL(S,I)
SKIPBL(I,J,K)
*CASE 2 PAGE 267
DEFINE(Y,X)
DEFINE(BUMP, $1=$1+1)
BUMP(X)
BUMP(Y)
#CASE 3 : PAGE 268
DEFINE(D, [DEFINE(SL,$2)])
D(A,B)
A
®CASE 4 PAGE 274
DEFINE(XX,C$1B)
XX(+)
Xx(-)
n("'p')
X
XX(*)
#CASE 5 PAGE 274
DEFINE(PROC, [INTEGER FUNCTION $1 $2 DEFINE(PROCNAME,S$1)))
PROC(EQUAL, (STR1,STR2))
*CASE 6 PAGE 276
DEFINE(MAXCARD, 80) :
DEFINE(MAXLINE, [INCR(MAXCARD) }
MAXCARD

MAXLINE
#CASE 7 PAGE 276
DEPINE(STRNG,THIS IS A SAMPLESTRING)
STRNG
SUBSTR(STRNG,1,16)
SUBSTR(STRNG,1)
SUBSTR(STRNG, 4,8)
SUBSTR([SUBSTR(STRNG,11,6)],2,3)
SUBSTR(SUBSTR(STRNG,11,6),2,3)

#CASE 8 PAGE 276
DEFINE(COMPARE, [IFELSE($1,$2,YES,NO)])
COMPARE(AA,BB)
DEFINE(CC,DD)
COMPARE(CC,DD)
#CASE 9 PAGE 280
DEFINE(LEN, [IFELSE($1,,0, [INCR(LEN(SUBSTR($1,2)))]D])
LEN(TEST)
DEFINE(SAM,SAMPLE STRING)
LEN(SAM)
*CASE 10 PAGE 280

NOTE [LEN] IS DEPINED IN CASE 9
DEPINE(STRING, [INTEGER $1(LEN(SUBSTR($2,2)))
STR($1,SUBSTR($2,2),0) DATA $1(LEN(SUBSTR($2,2)))/E0S/])
DATA $1(INCR($3)))/[LET{SUBSTR($2,1,1)/
DEFINE(STR, [IFELSE($2,",,
[STR($1,SUBSTR($2,2),INCR($3))])])
STRING(NAME, "TEXT")

Fig. 15-1. MACRO processor test examples.

63

A A e At a e lial e e o a o alt aim e e e D e e e ot M R i, R il o ket P e SR W e e

¥
!

- vy v T aTey vaw w
H Lo d e BT

-

hrhditn R 4

Xl

Ll

FILE:

*CASE

*CASE

*CASE

*CASE

*CASE

*CASE

*CASE

*CASE

#CASE

*CASE
*NOTE

T Ty R T Wy w

MTEST OUTPUT

1

Al F 80 41

WHILE(S($2) == BLANK |
WHILE(S(I) == BLANK
WHILE(I(J) == BLANK
2

PAGE™ 265

S($2) == TAB) §$2 =§2 +1
S(I) == TAB) I =1 +1
I(J) == TAB) J =J +1

PAGE 267

X=X+1
X=X+1

3
B
4

PAGE 268

C+B
C-B
C+B
CB

C*3
5

PAGE 274

PAGE 274

INTEGER FUNCTION EQUAL (STR1,STR2)

6
80
81
7

PAGE 276

THIS IS B SAMPLESTRING
THIS IS B SAMPLE

THIS IS B SAMPLESTRING
SISBS

UBS

AMP

8

PAGE 276

NO
YES
9

PAGE 276

4
13
10

PAGE 280

LEN IS DEFINED IN CASE 9
INTEGER NAME(S)

DATA NAME(1)/LETT/

DATA NAME(2)/LETE/

DATA NAME(3)/LETX/

DATA NAME(4)/LETT/

DATA NAME(5)/EOS/

Fig . 15-2 .

Results of

PAGE 280

MACRO processor test examples.

64

5 2/18/81

| gt St St S i

14

Cae GINE o st e]
. .

—

-
9
-
b

15.2 Procedure for Using MACRO on CMS

The MACRO Processor on the Amdahl 470 is located on the TOOLS
account. To invoke MACRO, type the following CMS commands
SHARE TOOLS
MACRO FN1 PFTL PFM1 FN2 FT2 M2

vhere

(FN1, FTl, FMl) is the filename, filetype and filemode of the input
file. MACRO expects as input a fixed blocked file with a record
length of 80 bytes.

(FN2, FT2, PM2) is the filename, filetype and filemode of the output
file.

The MACRO processor places on the terainal stack two parameters,
SLEN1 and &LEN2. This results in coluans 1 through &LENl being processed

in the file FN1 FT1l PFMl. The output file will only contain characters in

coluans 1 through &LEN2.

65

b s

U

~—~v oy v ¥ -

»
’
’
)
»

-r

-

ARG #™ |

-y
b -

M ok om0l A ol o

7

Caam o s e

16.0 VARIABLE CROSS REFERENCE PROCESSOR - XREF

XREF is a variable cross reference processor for FORTRAN programs
vhich 13 a major extension to the INDEX processor originally developed by
H. M. Murphy.

Output from XREF includes an optional source listing, an alphabeti-
cal liast of all symbols, a usage code which describes the symbol type and
a list of statement numbers where the particular symbol was referenced.
Figure 16-1 lists all cross reference usage codes. See Pig. ll-4 for
saaple output from XREF.

The XREF processor version 02.02 (XREF EXEC AND MODULE) are located
on the account TOOLS. To use XREF, type the following CMS commands:

SHARE TOOLS

XREF FN <FM> <(OPTIONS>

where:
FN ' The filename of the file to be cross referenced with
a filetype of FORTRAN.
FM Filemode of disk on which the file is resident. The

default is the "A" disk.

The following options are available:

DISK The printable output is written on the "A" disk with
a filename = FN, filetype = XRLIST. The file may be
printed with the COMS command:

PRINT FN XRLIST (CC

PR The output is sent to the systems line printer
NOPR No printer output is generated
WsXXX The listing width in columns is set to XXX. The

default 1is 100 columns.

66

S S SO Y

e A e v v - Oy R D B L. Y

L=YYY The number of print lines/page is set to YYY. The
default value of L i3 60 lines.

S The FORTRAN source is listed along with the cross
reference table.

NS The FORTRAN source listing is not generated.

XREF will process ANSI FORTRAN statements but does have the
S following limitations:
i. Blank lines are not permitted (LFP removes them).
: 2. The first source statement should be either PROGRAM, FUNCTION OR

- SUBROUTINE. If the program statement is missing (as it should
1 be for the Amdahl 470) the name MAIN is assigned.

p—

67

| i oo S Lt an 2 il e o
-

[

1

1

1

A

el Bl o B o B P PO PP S

uk aul s an agh i

gy

S S A et LA AR - e

on I Sl

''''''''
. a ‘s

Internal Usage

code code Variable Usage
1 Blank line - ignore
2 = Value changed by assignment statement
3 * Line on which statement number is defined
4 AG Subroutine Argument
5 Cco COMMON statement
6 CcX COMPLEX type statement
7 DA DATA statement
8 DI DIMENSION statement
9 DB DOUBLE PRECISION statement .
10 EQ EQUIVALENCE statement
11 EX EXTERNAL ENTRY name
12 IN INTEGER specification statement
13 LG LOGICAL specification statement
14 NM NAMELIST specification statement
15 PR PRINT statement
16 PU PUNCH statement
17 RD READ statement
18 RL REAL specification statement
19 " WR WRITE specification statement
20 DO DO Loop limit variable
21 CN COMMON block name
22 RE RETURN stateaent
23 ST STOP statement
24 SN Subroutine call
25 PA PAUSE stateaent
26 I DO Loop Index variable
27 EN END statement

Fig. 16-1. Cross reference symbol codes.

68

A—‘] -

ACKNOWLEDGMENTS

LFP (Lincoln Fortran Preprocessor) is a major extension to the FLECS

preprocessor which was originally developed by Terry Beyer at the
University of Oregon.

We would like to thank Terry Beyer for his permigsion to use
selected sections of the FLECS User Manual (motably sections 1, 2, &, 5,
6 and 7) in the preparation of this report.

G 77'_'“‘/‘1.' ver ¥

We would like to thank Paula Rygiel and Pam O'Connor for all the
time that was spent in the preparation of the original report and thanks
! a to Pam and Michelle Dalpe' for the work on this revised edition.

Bibliography

F (1] Beyer, T., Flecs Users Manual (University of Oregon Edition)

Contains a concise description of the Flecs extension of

Fortran and of the details necessary to running a Flecs program
on the PDP-10 or the IBM S/360 at Oregon.

i (2] Kernighan, B. W. and Plauger, P. J., Software Tools, Addison-Wesley
- Publishing Compsny, Reading, Mass (1976).
3

69

r"',f.‘.',(e
X

)

|

)

PO P S U SR . -~ S) i he i B M B o k! s, B el | O P - PR |

Yad e

Rl

,«uv*rv ———r;
A -

DM St

- o

w——— P— ,:-vr.v_“‘:r A
BT A EAE - EERICEL IS

APPENDIX A - Control Structure Summary Sheet

(" F (L) S) (" umess (L) S)
™Tmue 5 PALSE s

FALSE ™e

\ y _ y

BT

(£Lp) S:. . (8:) S:
(e) Sn . (En) Su
«FI . Fin

PALSE

—

J \

J

CARRY-QUT-ACTION

TO CARRY-OUT-ACTION S

woTE: mace A RETURR, STOP. on

CALL EXIT statemant a0

o Tee ranst T0 srareunt.

A CATCHALL CONDITION OR
oragssion tn CONDITIONAL
A SELECT sratomnrs.

Lash: £ © LOSICAL ExPREssion

& = statownr(s)
€ = poreession
I = D0 srecirication

rus.u’mmrm(u sj

e rmm s)

L <L) § A

[WILE (L) S)

70

i

LA SRRV

s, .'1"‘

.

=
LR

:

CARR. S ML ey

-
Lad

APPENDIX B - Control Statement Summary Sheet

iCoMment X
Define the comment delisiter charscter X. Defauwlt is ;
ZCoatrol X

Define the coutrol character X. Default ¢ %

Oouble space the LFP listiag
LHeeding CUARACTER STRING

Define the heading CHARACTER STRING to go at the top
of each page of the LFP listing.

ZInclude PILENAME FILETYPE

Include the coateats of the file = FILEMAME PILETYPE {a
the source file. The filetype must be 1JP.

ZINCExp N
Controls the inclusion of a file on the INCLUDE cerd.

if ¥ 1s O the file is not included, 1if W 1s 1 the
file is tncluded. Default = 1.

ILABEL XYZ
X 0 Modcomp PORTRAM line numbering
1 Asdshl FORTRAN line aumbering (defsult)
b 4 O LFP line nuabers at left of listing
1 TPFORTRAN line numbers at left of listiag (default)
Z 0 LFP line aumbers at right of listing
1 Line tags at vight of listiag (default)
2 blenks
ILADS

Left sdjust the source to column 7, removing blasks.
XLine N .

Print N lines per page. Default = 60.
TList

Print LFP listing. Defauit.
INOLad 3

Do not laft edjust source to column 7 (default).
INOList

Tura off LFP listing.
ZPage L]

Eject a page if We0 or N {s ulssing.
Tject a page if there sre less than N lines left on a page.

Single space LYP listing (default).

Triple space LFP liestiag.
Twideh L}

Width of LFP output lieting in charscters.
Default = 110

71

Section

8.1.1

8.1.3

8.1.4

8.2.1

8.1.5%

8.1.6

8.1.7

8.1.8

8.1.9

8.1.10

8.1.11

8.1.12

8.1.13

8.1.14

V-

ww

ke

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (¥ 'Aen Data Entered)
REPORT DOCUMENTATION PAGE EFORE COMPT ETING FORM

1. REPORT NUMBER GOVY, $SI0N 3. RECIPIENT'S CATALOG NUMBER
ESD-TR-82.083 Moo?
4. TINLE (and Subtitle) §. TYPE OF REPORT & PERIOD COVERED

LFP User's Manual (Lincoln Fortran Preprocessor) Technical Report

Version 02.01 for IBM/Amdahl Systems 6. PERFORMING ORG. REPORT NUMBER
Technical Report 623
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
James H. Cosgrove and Edward T. Bayliss F19628-80-C-0002
9. PERFORMING ORGAMIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
Lincoln Laboratory, M.L.T. AREA & WORK UNIT NUMBERS
P.O. Box 73 Program Element No. 627*18:\
Lexington, MA 02173-0073
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
U.S. Army Electronics Command 1 September 1982
Ft. Monmouth, NJ 07703 13. NUMBER OF PAGES
82
14. MOMITORING AGENCY MAME & ADDRESS (if different from Controlling Office) 15. SECURITY CLASS. (of this report)
Electronic Systems Division Unclassified
Hanscom AFB, MA 01731 15a. DECLASSIFICATION DOWNGRADIIG SCHEDULE
16. DISTRIBUTION STATEMENT (of this Repory
Approved for public release; distribution unlimited.
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from Report)
18. SUPPLEMENTARY NOTES
None
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
structured FORTRAN LFP internal procedure

20. ABSTRALT (Continue on reverse side if necessary and identify by block number)

LFP (Lincoln Fortran Preprocessor) provides top-down control structures to FORTRAN and
generates a self-documenting listing. LFP is compatible with existing FORTRAN and also permits
an internal procedure capability.

oo O™ 1473 comon oF 1 nov 85 IS OBSOLETE UNCLASSIFIED
1dm 73 SECURITY CLASSIFICATION OF THIS PAGE (W hrn Data Entered)

